郑州中原YE2-180M-2 22kw电动机质量有保证【河南金港电机有限公司】

2024-12-22 13:50:44 买帖  | 投诉/举报
  

公司专注于特种电机、标准电机和电机控制系统的研发、制造、销售和服务,定位服务于中、高端装备制造业客户,以快速和准确的方式,为客户创造具有特色的高品质电机系统产品与服务,以实现企业价值与客户价值共同成长。

公司主要产品有:特种电机、标准电机和电机控制系统三大类,以特种电机系统为主导,拥有NEMA、YE3(IE3)、YX3(YE2、IE2)、YVP、YCT、YD、DYG、TYG、TYPL、SZBY、IY系列 等20多个系列、3000多个规格电机品种,年生产能力达300多万千瓦。产品与服务广泛应用于石油机械、包装机械、冶金机械、造纸机械、塑料机械、橡胶机械、食品机械、矿山机械、锻压机床、空压机、注塑机、泵类等行业,并在多个行业处于业内先进水平。

本公司通过引进技术、消化开发、尊重知识、重视人才、积极开发新产品。产品设计结构新颖,工艺先进,技术力量雄厚,有完善的加工检测设备。产品在市场中享有良好的信誉,畅销国内外市场。

本公司宗旨:“质量第一、用户至上”,欢迎各方客户选用我公司的产品,欢迎诸位莅临指导!

本公司坚持的经营理念:

质量方针:追求卓越品质 打造国际品牌持续创新改进 增强顾客满意

科技理念:持续创新 引导行业新时代

价值理念:以人为本,以质为先,以新为求,以诚为基。


380V电机和6KV电机结构区别

额定电压不一样,启动和工作电流不一样,电压越高,电流越小,电机的绝缘和耐压也不一样,电机绕组的导线也一样,同样功率的电机,高电压的电机导线比低电压的要少,使用的电缆也不一样。380伏电机和6000伏电机在结构上主要有几点区别:第一是线圈的绝缘材料有所区别,380伏电机,线圈主要采用漆包线或其他简单的绝缘,6000伏电机的绝缘通常采用多层结构,结构更复杂,耐压程度更高。第二是散热结构上的区别,380伏电机主要采用同轴风扇直吹散热,6000伏电机大多数带有独立的散热器,通常有两种风扇,一组内循环风扇,一组外循环风扇。两组风扇同时运转,在散热器上进行热交换将热量排出电机外面。第三,轴承结构不同,低压电动机通常前后各有一组轴承,而6kv高压电动机,因为负载较重,通常轴伸端会有两组轴承,非轴伸端的轴承数量根据负载情况而定,而特别大型的电动机会采用滑动轴承。


其它:
1、电压等级越高,所带容量越大;所以大电机必须要用高电压,当然200KW电机还不算大,才出现了三个电压等级;2、电压等级越高,安装成本越高;虽然电压提高电流变小,导线及电缆截面可以选择的小些,但需要的高压断路器、互感器、开关柜等其它设备费用还是提高了,在初期投入大,所以小企业在新建时愿意用低电压的设备;3、电压等级越高,总运行成本越低;小电流带来电能损耗减小,从长远来看是合适的,累计起来效果惊人,所以许多大企业在技术改造时将低压电机改造为高压电机;4、高压等级越高,占用的空间越大;因为有高压控制柜等占用;5、高压等级越高,电机的启动等相对越容易,启动力矩加大,启动、控制相对简单(我认为);6、电压等级越高,维护管理越复杂;所以小企业愿意用低电压的,大企业愿意用高压电机。


三相异步电动机电刷与滑环接触面有较大火花的原因

(1)电刷在刷盒内过松或过紧。过松则会造成电刷较大的摆动,使其与滑环表面接触不稳定而产生火花;若过紧,则电刷上、下移动不灵活,同样也会因接触不稳定而产生火花。

    (2)刷盒离滑环表面距离过大。刷盒下口与滑环表面的距离应在2~4 mm之间,过大则易造成电刷摆动而产生火花。

    (3)电刷与滑环接触面积小于电刷截面的75%。此时除会产生火花外,还会造成电刷过热。可用00号砂布压在电刷与集电环之间,来回拉动,将电刷磨成需要的接触面。

    (4)电刷或滑环材质过硬或不均匀。

    (5)电刷所受压力过小。由于电刷磨短、压簧由于受热而使弹力减小等原因,造成电刷所受压力减少,从而造成与滑环接触不良而产生火花。电刷磨短应更换;测量电刷压力,若不足,应调解或更换弹簧。

    (6)集电环有较大的径向跳动。由于加工制造或使用时的磨损等原因,集电环滑环表面的径向跳动过大时,会造成电刷的跳动而产生火花。应拆下集电环,用车床将集电环的滑环外圆车到要求的圆度和粗糙度。

    (7)当电动机因安装不稳定等原因有较大振动时,也会出现火花较大的现象。


绕线转子电动机转子绕组常见故障查找方法

绕线转子的常见故障有并头套间短路、并头套与导线脱焊或脱落、引出线断裂或与轴及铁芯短路、导条层间绝缘损伤短路或对铁芯短路等。下面介绍各种故障的查找方法。

    (1)并头套间短路

    由于运行时机械力和电磁力的共同作用,使导线在薄弱的地方变形,或由于进入了导电的粉末(例如电刷粉末)而在两相邻并头套间形成导电层,都可造成并头套间的短路。

    若两相邻并头套靠近引出线端分属两相,则在电动机刚刚通电起动时,将因有较高的电位差而发生短路放电现象,从而将两者烧损。这一现象在拆出转子后是很容易看到。在不拆机的情况下,可用下述方法进行检查和初步确定。

    ①测直流电阻法

    用电桥或数字微欧表在转子引出线处测量转子绕组的3个线电阻。

    a.若3个电阻值基本相等(三相不平度小于3%),则说明正常。

    b.若3个电阻值相差在10%以内,并且是两个较小且基本相等,第3个正常(正常值从厂家提供的资料中查找),则说明有一相中的并头套间短路,即相当于匝间短路。

    c.若有一个值比另两个小得多,则可能是两相相邻的并头套间短路。

    ②试灯法

    用一个白炽灯和转子引出线相接,与转子绕组呈串联关系,由220V交流电供电。分别和转子绕组三个引出端中的两个相接(即K与M、K与L、L与K),共进行3次。观看每一次灯泡的亮度。

    a.亮度相同,三相正常。

    b.有两次较亮,说明有这两次中都接的那一相有短路现象。

    c.其中一次比另两次亮很多,说明是两相邻相的并头套短路。

    ③测量转子开路电压法

    给定子加一个较低的交流电压。转子输出线开路,在集电环上测量每两相之间的开路电压。

    a.若三相基本相等,则无故障。

    b.若有一相较大,另两相较小,则是一相中有并头套短路故障。

    c.若有一相电压很小,则说明并头套相间短路。

    (2)并头套脱焊或脱落

    因并头套焊接处理不当而未能焊实时,在电动机加载工作时则有可能因电阻大而过热,当达到焊锡的熔点时,就可将锡熔化并甩脱。此时,电动机转子将有一相断路,形成缺相运行。

    电动机转子缺相运行时,定子三相电流将周期性地大幅度摆动,同时出现转速下降、出力不足、振动较大等现象。长时间运行时,最终将造成未断的两相转子绕组过热烧毁。

    这种故障除从前面讲过的现象来判定外,还可用万用表电阻挡测量转子电阻或用示灯检查转子绕组通断的方法较容易地查出。因为转子三相在内部已接成了Y形,所以在测量引出线间电阻时,将有两次不通、一次通,通的一次所接两相是好的,当然,剩下的那相则是坏的了。

    (3)导条层间短路

    导条层间短路的现象和检查方法与并头套间短路基本相同。引出线所在槽内发生此故障时最为严重。

    (4)绕组对地(铁芯或支架等)短路

    转子绕组对地出现一点短路时,因没有电的回路,一般无反常现象。但当有两点及以上短路时,将在两点间形成电的回路而出现异常。严重时会将转子导条绝缘烧毁。同一相中有两点对地短路相当于匝间短路;两相各有一点对地短路相当于相间短路。所以其现象和查找方法和并头套间短路类似。

    (5)引出线开路或对地短路

    转子绕组引出线与导条相连处会因焊接不良在较大离心力的作用下断开;在穿入轴中心孔的入口处,往往因未固定好,运行时,在电磁力及离心力的共同作用下,磨破绝缘而对地(轴)短路。这些故障的现象和查找方法与前面讲述的相应内容相同。


电动机软起动器的节电原理

在生产实际当中,一些电气设备经常处于空载或轻载状态下运行,轻载或空载的电动机在额定电压的工作条件下,效率和功率因数均很低,造成电能大量浪费。

衡量电动机节电性能的重要指标为电机空载或轻载时最低运行电压的大小,即功率因数CosΦ的大小。为了说明电动机在不同负载的情况下运行,电压U与功率因数CosΦ的关系,以Y132S-4型,5.5KW三相异步电动机为例。

CosΦ的大小反应了负载的变化。软起动器正是利用微机技术,用单片机作CPU,用可控硅作为执行元件,实时检测电流和电压滞后角,即功率因数Φ角,输入给单片机,单片机根据最佳控制算法,输出触发脉冲,调整可控硅的导通角,即可调整可控硅的输出电压,使空载或轻载运行时降低电机的端电压,可使电机的铁损大大减小,同时也可减小电机定子铜损,从而减小电机空载或轻载时的输入功率,也就减小了电机有功和无功损耗,提高了功率因数,实现了节电控制。


直流电机制动方式

直流电机的制动,有机械制动,再生制动,能耗制动,反接制动机械制动就是抱闸,是电动的抱闸。反接制动:当切断正向电源后,立即加上反向电源,使电动机快速停止,当电动机速度降到零时,装在电动机轴上的“反接继电器”立即发出信号,切断反向电源,防止电动机真的反转。

1、能耗制动。指运行中的直流电机突然断开电枢电源,然后在电枢回路串入制动电阻,使电枢绕组的惯性能量消耗在电阻上,使电机快速制动。由于电压和输入功率都为0,所以制动平衡,线路简单;

2、反接制动。为了实现快速停车,突然把正在运行的电动机的电枢电压反接,并在电枢回路中串入电阻,称为电源反接制动。制动期间电源仍输入功率,负载释放的动能和电磁功率均消耗在电阻上,适用于快速停转并反转的场合,对设备冲击力大。

3、倒拉反转反接制动适用于低速下放重物。制动时在电路串入一个大电阻,此时电枢电流变小,电磁转矩变小。由于串入电阻很大,可以通过改变串入电阻值的大小来得到不同的下放速度。

反接制动时,切换极性相反的电源电压,使电枢回路内产生反向电流:反接制动时,从电源输入的电功率和从轴上输入的机械功率转变成的电功率一起消耗在电枢回路制动电阻上。

4、回馈制动。电动状态下运行的电动机,在某种条件下会出现由负载拖动电机运行的情况,此时出现 n >n0、Ea >U、 Ia 反向,电机由驱动变为制动。从能量方向看,电机处于发电状态——回馈制动状态。

正向回馈:当电机减速时,电机转速从高到低所释放的动能转变为电能,一部分消耗在电枢回路的电阻上,一部分返回电源;

反向回馈:电机拖位能负载(如下放重物)时,可能会出现这种状态。重物拖动电机超过给定速度运行,电机处于发电状态。电磁功率反向,功率回馈电源。


三相异步电动机定子绕组由三角形接法改成星形接法会产生哪些影响?

有的正常运行时采用三角形接法的电动机,在轻载时为了提高功率因数,常改成星形接法运行,这时,会产生如下一些影响。 1.电压 当定子绕组从三角形改接为星形时,各相绕组的相电压降低,仅为原来的1/√3。 2.力矩 由于电压降低到原来的1/√3,电动机的电磁力矩降低到原来的1/3。 3.转速 因电磁力矩降低,转速降低,转差增大。 4.转子电流 在同样的负载下,转差要增加到3倍以上。转差增大使转子电流增加。为使转子电流增加不致造成转子过热,必须限制电动机的负载,故改接后的电动机要减载。若转差保持不变,则负载将减低到原来的1/3。 5.定子电流 定子电流为空载电流和与转子电流对应的负载电流的相量和。在这种情况下,空载电流(激磁电流)因电压的降低而减小;而由于转子电流随电压的降低会增加,所以,与转子电流相对的负载电流也会增加。定子电流中的这两个成分,一个减小,一个增加,作用相反,其结果有两种可能,增加或减小,而关键取决于电动机的负载情况。在负载不大(小于24%额定负载)时,星形接法的定子电流要小些。 6.无功功率 电动机吸取的无功功率包括漏磁无功功率和磁化无功功率。由于改接后定子电压和折算后的转子电流间相位角增大,漏磁无功功率要增大3倍左右。此外,磁化无功功率因电压降低到1/√3而减小。总起来说,在负载小于70%的额定负载时,无功功率要比三角形接法时吸取的少一些。 7.有功损耗 改接后,定子铁芯损耗因电压降低而降低到原来的1/√3左右。定子和转子绕组中的有功损耗分别随定子电流和转子电流的平方成比例地变化。由于转子电流随电压降低而增加,转子中有功损耗将大大增加。定子绕组中的损耗,可能增加,也可能减小,要看定子电流的变化而定。从对一些电动机的分析可以看出;当负载小于额定负载的44%时,定子绕组接成星形有功损耗较小;当负载大于等于额定负载的44%时,定子绕组接成三角形有功损耗较小。只有当负载在0~70%额定负载的范围内变化时,星形接法才比三角形接法的功率因数高。 从上述分析可见,只有当电动机负载为额定容量的一半或更少时,将定子绕组从三角形接法改为星形接法才有意义。