公司主要致力研发和生产Y2系列三相异步电动机,YX3系列高效节能电机,YB3系列防爆电机,YEJ系列制动电机、YVP系列变频调速电机,卷帘门防爆电机和YD系列多速电机。
公司自成立以来一直秉承“引领高新技术 创造卓越动力”的经营理念。面对激烈的市场竞争,不断地提升生产技术,改善经营管理,提高服务水平,用人性化的管理凝聚人心,用最优质的服务回报客户,用高质量的产品回馈社会。
三相异步电动机星三角+正反转电路图原理
很多初学者朋友不知道怎么分析电路图,今天小编就挑选几个经典案列一一讲解,只要你彻底的学透了这几个电路,你就能慢慢学着自己设计电路了。高级电工考试会给出电路图,只要你会分析电路图,看图接线即可。
星三角降压启动
这个是手动控制的接线图,主线部分的接线一定要注意相序,启动时电机星型接法,运行的时候是三角形接法。右边的控制线部分,KMY和KM△要互锁,启动按钮SB2按下去以后,KM一直是自锁状态,几秒延时以后我们手动按下SB3,这时候KMY线圈失电,同时KM△自锁。SB3的按钮开关常开点串KM△的线圈常闭点串KMY的线圈。
这个是带延时继电器的星三角
带延时继电器的星三角更加方便,接线和上图的手动控制类似,只不过把按钮开关换成了延时继电器。按钮开关SB2按下去以后KM1自锁,同时延时继电器的线圈得电启动,延时继电器KT常闭点串KM2线圈,KT常开点串KM3线圈,延时时间到了以后KM3自锁。KM3的辅助常闭点串延时继电器的线圈,所以启动完成后,延时继电器也会断电。
控制电机正反转完整接线
这个电路用的非常多,其实就是接触器自锁和互锁的结合应用。KM1和KM2的线圈分别串彼此的辅助常闭点。一般实际应用的时候,SB2和SB3两个按钮也要机械互锁。双重互锁更加的安全。
一键启停
这个电路没有太大的实用性,但是非常适合学习。2个中间继电器和一个交流接触器,我们看一下电路,2个继电器互锁,KA1的线圈串KM的辅助常闭点,KA2的线圈串KM的辅助常开点。所以按下SB按钮开关KA1自锁,同时KA1的常开点闭合KM自锁,实现了启动操作。然后再按下SB按钮开关,KA2又会自锁,KA2的常闭点会断开,而KA2的常闭点是串的KM的线圈,所以同时KM线圈失电,实现停止操作。
小车自动往返电路
这个电路也很经典,其实它是控制电机正反转的加强版。利用行程开关实现自动往返的效果,按下SB1启动按钮KM1自锁,小车开始正向走,当碰到限位开关SQ1时,KM1线圈失电KM2自锁,小车又反向运行。只要不按下SB3这个停止按钮,它就会循环运行。
星三角加正反转
星三角我上图分析过了,控制电机正反转也分析过了。
电机绝缘电阻的合格标准
在国家和中小型电机行业标准中规定,在电机满载运行到热稳定状态后,所测得的绝缘电阻数值不应小于下式计算所得数值:但计算值低于0.38MΩ时,按0.38MΩ考核。
式中U-电机绕组的额定电压,V;
P-额定功率,kW。
对中小型电机,因分母中的( P/100)远小于1000,完全可以忽略,所以可近似地用电机额定电压的1/1000 (MΩ)作为标准数值。例如额定电压为380V的电机,应不低于380/1000=0.38MΩ。如一台电机允许使用两个数值的电压,则应按最高电压来计算,例如380V/660V电机,应不低于0.66MΩ。
在电机处在常温下进行测量时,对于低压电机,国家标准GB 14711-2006中规定,应不低于5MΩ;高压电机在技术条件中另行规定,一般规定是:电机额定电压为3kV、6kV和10kV时,常温下的绝缘电阻最低限值分别为50MΩ、100MΩ和200MΩ(非国家标准,请参考使用)。
电动机控制线路线号的标注方法
是用220V或380V交流电源控制,线号备注按照从左至右、从上至下的原则进行。从电源的一端开始(如从左侧开始)向电源的另一端标注:从1开始按奇数号标注,每经过一个元件递增一个线号,直至有压降的元件(如接触器线圈)为止;然后,从电源的另一端开始(如从右侧开始)向电源的对侧一端标注:从2开始按偶数号标注,直至上一个有压降的元件(如接触器线圈)为止。值得注意的是:整个图中不能有重复的编号。
(1)主回路线号的编写。三相电源自上而下编号为L1、L2、和L3,经电源开关后出线上依次编号为U1、V1和W1,每经过一个电器元件的接线桩编号要递增,如U1、V1和W1递增后为U2、V2和W2……。如果是多台电动机的编号,为了不引起混淆,可在字母的前面冠以数字来区分,如1U、1V和1W;2U、2V和2W。
(2)控制回路线号的编写。通常是从上至下、由左至右依次进行编写。每一个电气接点有一个唯一的接线编号,编号可依次递增。如编号的起始数字,控制回路从阿拉伯数字"1"开始,其他辅助电路可依次递增为101、201……作起始数字,如照明电路编号从101开始;信号电路从201开始。
电动机的功率因数
功率因数 = 有功功率 / 视在功率
视在功率 = 有功功率 + 无功功率
有功功率是真正用到的功率,无功功率是存储在感性负载中,并没有被真正使用到的功率。
在同样的有功功率条件下,功率因数越大,所需视在功率越小,电流也就越小。
异步电动机的功率因数是衡量在异步电动机输入的视在功率(即容量等于三倍相电流与相电压的乘积)中,真正消耗的有功功率所占比重的大小,其值为输入的有功功率P1与视在功率S之比,用来表示。电动机在运行中,功率因数是变化的,其变化大小与负载大小有关,电动机空载运行时,定子绕组的电流基本上是产生旋转磁场的无功电流分量,有功电流分量很小。此时,功率因数很低,约为0.2左右,当电动机带上负载运行时,要输出机械功率,定子绕组电流中的有功电流分量增加,功率因数也随之提高。当电动机在额定负载下运行时,功率因数达到最大值,一般约为0.70.9。因此,电动机应避免空载运行,防止“大马拉小车”现象。
电动机的功率因数:
电网中的电力负荷如电动机、变压器等,属于既有电阻又有电感的电感性负载。电感性负载的电压和电流的相量间存在着一个相位差,通常用相位角φ的余弦cosφ来表示。cosφ称为功率因数,又叫力率。功率因数是反映电力用户用电设备合理使用状况、电能利用程度和用电管理水平的一项重要指标。
cosφ——功率因数;
P——有功功率,kW;
Q——无功功率,kVar;
S——视在功率,kV。A;
U——用电设备的额定电压,V;
I——用电设备的运行电流,A。
功率因数分为自然功率因数、瞬时功率因数和加权平均功率因数。
(1)自然功率因数:是指用电设备没有安装无功补偿设备时的功率因数,或者说用电设备本身所具有的功率因数。自然功率因数的高低主要取决于用电设备的负荷性质,电阻性负荷(白炽灯、电阻炉)的功率因数较高,等于1,而电感性负荷(电动机、电焊机)的功率因数比较低,都小于1。
(2)瞬时功率因数:是指在某一瞬间由功率因数表读出的功率因数。瞬时功率因数是随着用电设备的类型、负荷的大小和电压的高低而时刻在变化。
(3)加权平均功率因数:是指在一定时间段内功率因数的平均值.
提高功率因数的方法有两种,一种是改善自然功率因数,另一种是安装人工补偿装置。
功率因数是交流电路的重要技术数据之一。功率因数的高低,对于电气设备的利用率和分析、研究电能消耗等问题都有十分重要的意义。
所谓功率因数,是指任意二端网络(与外界有二个接点的电路)两端电压U与其中电流I之间的位相差的余弦 。在二端网络中消耗的功率是指平均功率,也称为有功功率, 电路中消耗的功率P,不仅取决于电压V与电流I的大小,还与功率因数有关。而功率因数的大小,取决于电路中负载的性质。对于电阻性负载,其电压与电流的位相差为0,因此,电路的功率因数最大();而纯电感电路,电压与电流的位相差为π/2,并且是电压超前电流;在纯电容电路中,电压与电流的位相差则为-(π/2),即电流超前电压。在后两种电路中,功率因数都为0。对于一般性负载的电路,功率因数就介于0与1之间。
一般来说,在二端网络中,提高用电器的功率因数有两方面的意义,一是可以减小输电线路上的功率损失;二是可以充分发挥电力设备(如发电机、变压器等)的潜力。因为用电器总是在一定电压U和一定有功功率P的条件下工作。
可知,功率因数过低,就要用较大的电流来保障用电器正常工作,与此同时输电线路上输电电流增大,从而导致线路上焦耳热损耗增大。另外,在输电线路的电阻上及电源的内组上的电压降,都与用电器中的电流成正比,增大电流必然增大在输电线路和电源内部的电压损失。因此,提高用电器的功率因数,可以减小输电电流,进而减小了输电线路上的功率损失。
直流电机和单相交流电机的区别
直流电动机与交流电动机的应用场合都比较广,两者工作的基本原理相同,都是电磁感应定律,且两者都有各自的优缺点,这点很多资料中都有介绍。分析一下,直流电动机或者说是直流电机有其工作时的缺点很重要的一个原因大概就是因为换向器,这也是决定直流电机与交流电机工作方式不同的最主要原因。还是以电动机为例,电动机要想工作,必须靠转子绕组所感应到的电磁力拖动转子进行旋转,所以要想保证电动机稳定持续旋转,转子绕组中的感应电磁力必须保持方向一致,对于直流电动机来说,定子磁场的方向不变,所以如果转子中的电流不进行换向的话,那么转子在旋转的过程中受到的电磁力方向就会改变,不能保证转子连续旋转。即只要转子绕组中的电磁力方向一致,转子就能持续旋转。而交流电动机正是利用了这一点,在工作时,不通过换向,而是通过改变定子磁场方向的方式保证这一点,因为对于交流电机来说定子磁场不是固定不变的,而是按照一定的规律在旋转,所以能够保证转子绕组受到的电磁力方向不变。交流电动机只要定子线圈按相位布局,自然会产生旋转磁场就能保证转子旋转。还有一个需要注意的地方,虽然直流、交流电动机的工作原理都是电磁感应定律,但是两者也有不同之处,可以通过两者启动方式的不同理解。直流电动机转子转动(电枢绕组运动或者受力)是因为通电的电枢绕组在磁场里受到电磁力,所以前提是电枢中有电流,所以直流电动机要想启动需要有电枢电流;而交流电动机启动时只要对定子通入交流电,就会产生一个旋转磁场,这个磁场由于是运动的,所以转子绕组会感应出电动势,只要转子绕组能够形成闭合回路,就会产生电流,就会感应出电磁力拖动转子进行转动,所以交流电动机转子运动的前提是磁场在旋转,这是两者在运动初始状态时的不同。即直流电动机启动的过程为:磁场+通有电流的电枢绕组→绕组中有感应的电磁力→拖动转子转动;而交流电动机的启动过称为:定子接入三相交流电→定子旋转磁场→使处于旋转磁场中的转子绕组产生感应电动势→由于转子绕组形成了闭合回路(前提),所以转子绕组中产生了电流→转子绕组产生感应电磁力→拖动转子进行旋转。
单相交流电动机只有一个绕组,转子是鼠笼式的。
单相电不能产生旋转磁场.要使单相电动机能自动旋转起来,我们可在定子中加上一个起动绕组,起动绕组与主绕组在空间上相差90度,起动绕组要串接一个合适的电容,使得与主绕组的电流在相位上近似相差90度,即所谓的分相原理。这样两个在时间上相差90度的电流通入两个在空间上相差90度的绕组,将会在空间上产生(两相)旋转磁场,在这个旋转磁场作用下,转子就能自动起动,用单相电容式电机说明:单相电机有两个绕组,即起动绕组和运行绕组。两个绕组在空间上相差90度。在起动绕组上串联了一个容量较大的电容器,当运行绕组和起动绕组通过单相交流电时,由于电容器作用使起动绕组中的电流在时间上比运行绕组的电流超前90度角,先到达最大值。在时间和空间上形成两个相同的脉冲磁场,使定子与转子之间的气隙中产生了一个旋转磁场,在旋转磁场的作用下,电机转子中产生感应电流,电流与旋转磁场互相作用产生电磁场转矩,使电机旋转起来。
直流电机是磁场不动,导体在磁场中运动;交流电机是磁场旋转运动,而导体不动.
直流电动机分为定子绕组和转子绕组.定子绕组产生磁场.当通直流电时.定子绕组产生固定极性的磁场.转子通直流电在磁场中受力.于是转子在磁场中受力就旋转起来.直流电机构造复杂.造价高.
无刷直流电机采用永磁材料激磁,而不是电激磁,在相同的工况下,体积小,重量轻。并且无刷电机具有高效节能、控制特性好、可靠性高、寿命长、噪音低等优点,正在越来越多的家电领域取代交流电机。对于油烟机系统与单相交流电机相比较,直流无刷电机有如下优势:
1.调速方面:
目前交流电机只能做到三档调速,而直流无刷电机可以在0-1500转之间做到无极调速,可以极大的方便用户选择合适的转速。增加了产品使用的舒适性。
2.噪音方面:
实现了启动噪音和运转噪音的双重降低:首先,直流变频实现软启动,平衡的运转状态消除了吸油烟机启动时产生的噪音。其次,用户根据使用需求可以选择不同的频率,在0-1500转之间,选择相应的运转状态,噪音始终处于超低范围。
3.风量方面:
直流无刷电机本身具有起动转矩高,过载能力强,负载特性硬的特点。用户实际使用时电机转速要高于交流电机,风量也要高于交流电机。
4.系统效率方面:
高效是直流无刷调速系统据有的优点。在油烟机全压效率上,可以高出交流电机7-8个百分点,达到29.78%。
5.节能方面:
节能已经成为未来家电的发展方向,抽油烟机在家庭里也属于每天都要使用的电器,虽然每次使用时间不长,但由于目前使用的交流电机效率太低,能耗还是很大。而采用直流电机节能的空间非常大,通过试验,在相同风量下交流异步电机需要180W的输入功率,而直流电机只需要80W。直流马达在效率方面要比交流马达高出50%以上。
6.电机重量和温升:
直流无刷电机由于采用永磁结构,电机重量只有交流电机的70%。在室温下全速运行时电机温升只有交流电机的50%。
7.系统可靠性方面:
直流无刷调速系统的应用在目前已经非常成熟,系统的可靠性也在很多产品中得到验证。我们的直流无刷电机是由信息产业部第二十一研究所设计制造,这是一家国内设计和生产直流电机的权威单位。控制器所用主要元器件都采用国外著名品牌,由专业生产厂家生产。