武汉YDS隧道风机专用电机哪里卖-【金港电机有限公司】

2024-05-08 18:51:19 买帖  | 投诉/举报
  

公司电机设计先进,工艺精良,结构合理,性能可靠,质量上乘,享有良好的信誉,先后获得CE认证、CCC认证、CQC认证、出口质量许可证和防爆电机合格证、安标证、生产许可证。主要产品有GT系列永磁同步伺服电动机,YE3系列超高效率三相异步电动机,YE2系列高效率三相异步电动机,YVF系列变频专用电动机,Y、YKK、YKS、YR、YRKK、YRKS系列高压电动机,DG系列高效率三相异步电动机,YE2系列空压机专用电动机,YD、YDT系列变极多速电动机,YSJ系列注塑机用低噪声电动机

我公司设有质保部、产品开发部、生产管理部、设备管理部、市场营销部、财务部、信息情报室、技术中心、检测中心,现有员工近百人,其中大专以上学历占总人数的20%左右,具有较强的开发设计和大批量生产能力。

我公司视质量和商业诚信为生命,力求为客户创造价值,会建立双方互利共赢的合作关系。


单相异步电动机正反转控制的两种方法

单相异步电动机在工农业生产及人们日常生活中应用非常广泛。根据实际需要,不仅要电机正转,有时还要使其反转。下面笔者就来同大家一起讨论着个问题,并谈谈自己的一些看法。
单相异步电动机有两个定子绕组,一个是主绕组,即工作绕组,产生主磁场;另一个是副绕组,即辅助绕组(启动绕组),用来与主绕组共同作用而产生旋转磁场,使电动机产生启动转矩。这两个绕组在空间上相差90°,通常是启动绕组串联一个适当容量的电容器。
要想单相异步电动机反转就必须改变旋转磁场的方向,使旋转磁场反转。而要改变磁场的旋转方向就需将两个绕组(工作绕组和启动绕组)中任一个绕组的电流相位发生改变180°。那么如何实现这种改变呢?
1、 启动绕组与工作绕组互换
对于单相电容式电动机,将启动电容器从一个绕组改接到另一个绕组上即可实现电动机的正反转。这种方法改变转向,电路简单,适用于频繁正反转的场合。比如,家用洗衣机。但是这种方法有一定的局限性,它只适用于启动绕组与工作绕组的技术参数(线圈匝数、粗细等)都相同的电动机。如下图:


(图一)
上图一所示,U1U2、V1V2分别为工作绕组和启动绕组,C为启动电容,K为控制开关,L、N为电源接线端。当开关K与上触点接触时,电机正转;当开关K与下触点接触时,电机反转。其等效电路如下:


(图二)
从图二可看出,电机反转时,电机工作绕组与启动绕组进行了互换连接。
2、 工作绕组或启动绕组任一组的首端与末端对调
这种方法的实质是将其中任一套绕组反接,使之电流相位改变180°。主要用于启动绕组与工作绕组技术参数不相同电容(电阻)启动异步电动机。为了方便接线,生产厂家往往使用统一标准的接线板将电动机绕组线引出,如下图三所示,U1U2,V1V2分别为工作绕组和启动绕组,C为外接电容器,K为电动机内部的离心开关。电动机启动后,当转速达到80%时左右时,K断开,切除V1V2,工作绕组拖动负载运行。


(图三)
电机正转时,用连接片将U1与V1连接在一起,U2与Z2连接在一起。U1端接电源相线,U2端接电源你零线。如下图:


(图四)
电机反转时,用连接片将U1与Z2连接在一起,U2与V1连接在一起,U1端接电源相线,U2接电源零线。如下图:


(图五)
有图五可看出,电机反转时,启动绕组的首端与末端进行了有效互换。


电动机转矩波动测试方法

电动机作为传动机械装置,输出直接用于驱动负载。在电动机传动系统运转过程中,由于齿槽力矩、电磁效应和加工装配工艺等产生的转矩波动将直接作用到负载上,从而对系统速度平稳性及控制精度产生影响。尤其在轻载和低转速状态下,转矩波动值占电机输出力矩比例明显增大,这种影响更加不能忽略,因而准确测量转矩波动是电动机实际应用研究中亟待解决的问题。
1.间接测试方法

按照动力学原理,角位移的微分是角速度,角速度的微分是角加速度,转动惯量一定时,角加速度与转矩大小成正比。按照这一原理,对电动机运行时的波动现象进行分析(参见图示1),电动机通过联轴器与一恒定负载相连组成工作系统。转矩出现波动时,其运动平衡方程如下式1示:

……1
式中:
Te——为电动机电磁转矩;
T1——为恒定负载转矩;
J1——为电动机转动惯量;
J2——为恒定负载转动惯量;
θ——为电动机旋转时的角位移。
式1表示,工作系统中电动机转矩Te与恒定负载转矩T1之差和角加速度
成正比。只要测量出系统的角加速度,就可以测出电动机转矩波动值。测量角速度的问题则可以转换成测量系统角位移的问题。也就是说,只要测量出系统在旋转时的角位移就可以通过计算求出电动机转矩波动值,进而计算出转矩波动系数。由式1得:
……2
由式1及式3可得:

转矩波动测试如图上2所示。将被测电动机与角位移传感器以及恒定负载同轴连接,角位移传感器输出接微分运算及结果输出装置。角位移传感器可使用旋转变压器发送机,使用旋转变压器发送机时,其输出信号要通过R/D转换器。接入微分运算及结果输出装置。微分运算及结果输出装置主要靠编程实现。恒定负载装置可使用磁粉制动器。检测时,使被测电动机在规定转速下旋转,并保持其电流恒定。可以给被测电动机施加恒定转矩,也可空载。空载情况比负载情况编程简单,理论上通过编程补偿可得到相同的测量结果。
2.直接测试方法
转矩波动系数的测量可以按照定义通过直接检测转矩变化量然后通过计算的方法得出。根据国标《GB/T30549-2014交流伺服电机通用技术条件》介绍,主要采用以下测试方式获取转矩波动系数:
在稳定工作温度下,电机施加额定转矩,并在产品专用技术条件规定的最低转速下运行,用转矩测试仪测量并记录电机在一转中的输出转矩,找出最大转矩和最小转矩,按照下式3算电机的转矩波动系数。
……3
式中:
KTb——转矩波动系数,%;
Tmax——最大转矩,单位为牛顿米(N.m);
Tmin——最小转矩,单位为牛顿米(N.m)。
这种方法清晰、直观,但是负载设备动态运行状态下容易引入误差。在此基础上现在测试方式以改进的堵转测试法为最优:用磁粉制动器作为负载,测量电机在额定电流时,转子在360/(2p)(p为电机极对数)范围内均分10点上的堵转转矩,分别找出堵转转矩最大值和最小值,即可利用公式1计算出转矩波动。
堵转测试时,在电机和负载之间接入动态扭矩转速传感器,随着技术发展,新型的扭矩转速传感器满足高精度、快响应的测量需求,可以很好的完成转矩波动测试。


三相异步电动机常见故障判断方法

电动机常见的故障可以归纳为机械故障,如负载过大、轴承损坏、转子扫膛(转子外圆与定子内壁摩擦)等;电气故障,如绕组断路或短路等。 三相异步电动机的故障现象比较复杂,同一故障可能出现不同的现象,而同一现象又可能由不同的原因引起。在分析故障时要透过现象,抓住本质,用理论知识和实践经验相结合,才能及时准确地查出故障原因。 一般的检查顺序是先外部后内部、先机械后电气、先控制部分后机组部分。采用“问、看、闻、摸”的办法。 问:首先应向运行人员详细询问故障发生的情况,尤其是故障发生前后的变化,如电压、电流等。 看:观察电动机外表有无异常情况,端盖、机壳有无裂道,转轴有无转弯,转动是否灵活,必要时打开电动机观察绝缘漆是否变色,绕组有无烧坏的地方。 闻:也可用鼻子闻有无特殊气味,辨别出是否有绝缘漆或定子绕组烧毁的焦糊味。 摸:用手触摸电动机外壳及端盖等部位,检查螺栓有无松动或局部过热(如机壳某部位或轴承室附近等)情况。 如果表面观察难以确定故障原因,可以使用仪表测量,以便做出科学、准确的判断。其步骤如下。 ①用兆欧表分别测量绕组相间绝缘电阻、对地绝缘电阻。 ②如果绝缘电阻符合要求,用电桥分别测量三相绕组的直流电阻是否平衡。 ③前两项符合要求即可通电,用钳形电流表分别测量三相电流,检查其三相电流是否平衡,而且是否符合规定要求。 三相异步电动机绕组损坏大部分是由单相运行造成的,即正常运行的电动机突然一相断电,而电动机仍在工作。由于电流过大,如不及时切断电源势必烧毁绕组。单相运行时,电动机声音极不正常,发现后应立即停车。造成一相断电的原因是多方面的,如一相电源线断路,一相熔断器熔断、开关一相接触失灵、接线头一相松动等。此外,绕组短路故障也较多见,主要是绕组绝缘不同程度的损坏所致。如绕组与地短路、绕组相间短路和一相绕组本身的匝间短路等都将导致绕组不能正常工作。当绕组与铁芯间的绝缘(槽绝缘)损坏时,发生接地故障。由于电流很大,可能使接地点的绕组烧断或使熔断丝熔断,继而造成单相运行。相间绝缘损坏或电动机内部的金属杂物(金属碎屑、螺钉、焊锡豆等)都可导致相间短路,因此装配时一定要注意电动机内部的清洁。一相绕组如有局部导线的绝缘漆损坏(如嵌线或整形时用力过大,或有金属杂物),可使线圈间造成短接,称为匝间短路,使绕组有效圈数减少,电流增大。


电动机工作制

电机还有一个重要参数是工作制,查看电机铭牌,一般给的额定电流是在特定工作制下的电流。

电动机工作制为:S1~S10;其中: 电机的工作制的分类是对电机承受负载情况的说明,它包括启动、电制动、空载、断能停转以及这些阶段的持续时间和先后顺序,工作制分以下10类:

S1 连续工作制:

在恒定负载下的运行时间足以达到热稳定。

S2 短时工作制:

在恒定负载下按给定的时间运行,该时间不足以达到热稳定,随之即断能停转足够时间,使电机再度冷却到与冷却介质温度之差在2K以内。

S3 断续周期工作制:

按一系列相同的工作周期运行,每一周期包括一段恒定负载运行时间和一段断能停转时间。这种工作制中的每一周期的起动电流不致对温升产生显著影响。

S4 包括起动的断续周期工作制:

按一系列相同的工作周期运行,每一周期包括一段对温升有显著影响的起动时间、一段恒定负载运行时间和一段断能停转时间。

S5 包括电制动的断续周期工作制:

按一系列相同的工作周期运行,每一周期包括一段起动时间、一段恒定负载运行时间、一段快速电制动时间和一段断能停转时间。

S6 连续周期工作制:

按一系列相同的工作周期运行,每一周期包括一段恒定负载运行时间和一段空载运行 时间,但无断能停转时间。

S7 包括电制动的连续周期工作制:

按一系列相同的工作周期运行,每一周期包括一段起动时间、一段恒定负载运行时间和一段快速电制动时间,但无断能停转时间。

S8 包括变速变负载的连续周期工作制:

按一系列相同的工作周期运行,每一周期包括一段在预定转速下恒定负载运行时间,和一段或几段在不同转速下的其它恒定负载的运行时间,但无断能停转时间。

S9 负载和转速非周期性变化工作制:

负载和转速在允许的范围内变化的非周期工作制。这种工作制包括经 常过载,其值可远远超过满载。

S10 离散恒定负载工作制:

包括不少于4种离散负载值(或等效负载)的工作制,每一种负载的运行时间应足以使电机达到热稳定,在一个工作周期中的最小负载值可为零。


电动机三相电流不平衡的原因及表现

1、三相电压不平衡

如果三相电压不平衡,电动机内就有逆序电流和逆序磁场存在,产生较大的逆序转矩,造成电动机三相电流分配不平衡,使某相绕组电流增大。当三相电压不平衡度达5%时,可使电动机相电流超过正常值的20%以上。三相电压不平衡主要表现在:

(1)变压器三相绕组中某相发生异常,输送不对称电源电压。

(2)输电线路长,导线截面大小不均,阻抗压降不同,造成各相电压不平衡。

(3)动力、照明混合共用,其中单相负载多,如:家用电器、电炉、焊机等过于集中于某一相或某二相,造成各相用电负荷分布不均,使供电电压、电流不平衡。

2、负载过重

电动机处于过载运行状态,尤其是起动时,电动机定、转子电流增大发热。时间略长,极易出现绕组电流不平衡现象。负载过重主要表现在:

(1)皮带、齿轮等传动机构过紧或过松。

(2)联轴机件歪斜,传动机构有异物卡住。

(3)润滑油干涩,轴承卡壳,机械锈死(其中包括电动机本身机械故障)。

(4)电压过高或过低,使损耗增加。

(5)负载搭配不当,电动机额定功率小于实际负载。

3、定子、转子绕组故障

定子绕组出现匝间短路、局部接地、断路等,都会引起走子绕组中某一相或其二根电流过大,使三相电流严重不平衡。走子、转子绕组故障表现在:

(1)定于内膛有灰尘、杂物、硬性创伤,造成匝间短路。

(2)定子绕组某相断路。

(3)定子绕组受潮,有漏电流现象。

(4)轴承、转子受损变形,转子与走子绕组相擦。

(5)鼠笼式转子绕组断条焊裂,产生不稳定电流。

4、操作、维护不当

操作人员不能定期做好电气设备的检查保养工作,是人为造成电动机漏电、缺相运行,产生不平衡电流的主要因素。

操作维护不当主要表现在:

(1)操作安装人员将相、零线接反。

(2)进线与接线盒相碰,有漏电流。

(3)各连接开关、触点松脱、氧化等原因造成缺相现象。

(4)频繁起动,起动时间过长或过短,造成熔丝断相。

(5)长期使用,缺少保养,使电动机衰老,局部绝缘退化。


降低笔记本直流电动机风扇转速

以下以笔记本电脑并励直流电动机为例,可采用以下三种方法来降低转速:

(1)降低端电压。由于电源电压一般是固定的,难以改变。而且降低端电压,将导致励磁电流减少,因此又会使电动机的转速升高,所以这种方法很少采用。

(2)增加励磁电流,即增高磁场强度。由于受磁路饱和的限制,且电源电压难以升高,励磁绕组的固有电阻不能改变,所以这种方法应用不广。

(3)在电枢回路中串联电阻,降低电枢端电压。这种方法最简单,容易实行,所以是降低直流电动机转速的一种最常用的方法。