巩义市YE2-80M1-4 0.75KW电动机价格_【河南巩义市金港电机有限公司】

2024-04-12 18:26:37 买帖  | 投诉/举报
  

我们集研发、制造、销售和服务为一体的现代化的综合性大企业。也是中国中小型电机行业最具规模和实力的企业之一。公司荣誉出品各种系列电机产品:YE2高效电机,YE3超高效电机,低压大功率节能电机,YVF2变频电机,YEJ2制动电机,YD2双速、多速电机,YDT多速风机电机,YL、YC、YY单相电机,YS,铝壳电机,高温电机,油泵电机,中央空调风机电机,管道泵电机和其他特殊专用等电机。

品质保障:专业电动机生产企业,省名牌产品,生产规范,质量有保证。

技术领先:技术力量雄厚,先后参与GB/T21973-2008《YZR3系列起重及冶金用绕线转子三相异步电动机技术条件》、GB/T21972.3-2013《YZP系列起重及冶金用变频调速三相异步电动机(离心风机冷却)》、JB/T8956-2011《YZTD(E)系列塔式起重机(电磁制动)多速三相异步电动机技术条件》、JB/T10746-2007《YEZ系列建筑起重机械用锥形转子制动三相异步电动机技术条件》等国家标准和行业标准审定和制定,是全国旋转电机标准化技术委员会会员单位。

服务优良:销售服务一体化,全天候相应,全过程跟进,为顾客提供优质服务,完美售后有保障。

品牌积淀:老品牌,多年的技术积淀,经验丰富,力量雄厚,品牌有保障。

高性价比:技术先进,性能优良,服务优质,价格合理。


变频电机是怎样实现节能的?

1、变频节能

由流体力学可知,P(功率)=Q(流量)╳ H(压力),流量Q与转速N的一次方成正比,压力H与转速N的平方成正比,功率P与转速N的立方成正比,如果水泵的效率一定,当要求调节流量下降时,转速N可成比例的下降,而此时轴输出功率P成立方关系下降。即水泵电机的耗电功率与转速近似成立方比的关系。例如:一台水泵电机功率为55KW,当转速下降到原转速的4/5时,其耗电量为28.16KW,省电48.8%,当转速下降到原转速的1/2时,其耗电量为6.875KW,省电87.5%.

2、功率因数补偿节能

无功功率不但增加线损和设备的发热,更主要的是功率因数的降低导致电网有功功率的降低,大量的无功电能消耗在线路当中,设备使用效率低下,浪费严重,由公式P=S╳COSФ,Q=S╳SINФ,其中S-视在功率,P-有功功率,Q-无功功率,COSФ-功率因数,可知COSФ越大,有功功率P越大,普通水泵电机的功率因数在0.6-0.7之间,使用变频调速装置后,由于变频器内部滤波电容的作用,COSФ≈1,从而减少了无功损耗,增加了电网的有功功率。

3、软启动节能

由于电机为直接启动或Y/D启动,启动电流等于(4-7)倍额定电流,这样会对机电设备和供电电网造成严重的冲击,而且还会对电网容量要求过高,启动时产生的大电流和震动时对挡板和阀门的损害极大,对设备、管路的使用寿命极为不利。而使用变频节能装置后,利用变频器的软启动功能将使启动电流从零开始,最大值也不超过额定电流,减轻了对电网的冲击和对供电容量的要求,延长了设备和阀门的使用寿命。节省了设备的维护费用。

变频器可以省电这是不可磨灭的事实,在某些情况下可以节电40%以上,但是某些情况还会比不接变频器浪费!

变频器是通过轻负载降压实现节能的,拖动转距负载由于转速没有多大变化,即便是降低电压,也不会很多,所以节能很微弱,但是用在风机环境就不同了,当需要较小的风量时刻,电机会降低速度,我们知道风机的耗能跟转速的1.7次方成正比,所以电机的转距会急剧下降,节能效果明显。如果我们用在油井上,就会因为在返程使用制动电阻白白浪费很多电能反而更废电。

当然,如果环境要求必须调速,变频器节能效果还是比较明显的。不调速的场合变频器不会省电,只能改善功率因数。


带指示灯电动机连续运行控制电路原理图识读方法

图所示为带指示灯的电动机连续运行控制电路原理图。图中所用的元器件见表1。


图  带指示灯的电动机连续运行控制电路原理图
表1 带指示灯的电动机连续运行控制电路元器件明细表


1.看资料
结合电路中的文字说明、技术说明,搞清电路的用途,对电路有一个大致的了解。从图中可以看到,此电路有一台电动机,此电动机起动后连续运行。
2.弄明白电路中各符号所代表的意义
根据电气图形符号、文字符号和元器件明细表,弄明白电路中各符号所代表的意义。
3.先看主电路
主电路通常在图的左侧,主电路包括断路器、接触器主触头、热继电器、电动机及连接导线等。它是从电源至电动机输送电能时电流所经过的电路,所以电流较大。识图时通常从下面的被控设备开始,经控制元件,依次看到电源。通过看主电路可以知道:
1)主电路中有哪些电器设备,它们的用途和工作特点是什么。
2)主电路中的电动机是用什么电器控制的,为什么要通过这些电器,这些电器设备的作用是什么。
结合此图,从电动机M往上看,只有一条主电路:电动机M→热继电器FR→接触器KM主触头→三相断路器QF→三相交流电源。
4.再看控制电路
控制电路在图的右侧,控制电路起控制和保护作用。控制电路包括熔断器、接触器线圈、辅助触头、按钮及连接导线等。看控制电路通常按照自上而下或从左到右的原则。
1)看电源,先搞清电源是交流电源还是直流电源,其次搞清电源从何而来,其电压是多少。
2)看各控制支路,整个控制电路可分为几条独立的小回路。
3)看各支路是由哪些元器件构成闭合回路的。
结合此图可以看到控制电路有三条支路:第一条从电源L3→熔断器FU→按钮SB1、SB2→接触器KM线圈→热继电器FR触点→熔断器FU→电源L2;第二条从电源L3→熔断器FU→KM-2常开辅助触头→红灯HLR→熔断器FU→电源L2;第三条从电源L3→熔断器FU→KM-3常闭辅助触头→绿灯HLG→熔断器FU→电源L2;三条支路的电源都接在L2、L3两相,电压为~380V。
5.搞清电路之间的控制关系
搞清主电路与控制电路及控制支路之间的联系和控制关系,电路中各电器元件、触头的作用是什么。
1)先看主电路。电动机M起动时,需要合上断路器QF,同时还应使接触器KM得电吸合,再观察接触器KM的控制电路,平时SB2的触头处于断开位置。所以起动时应按下SB2,接通接触器KM线圈的控制回路,接触器KM线圈中有电流,接触器吸合,KM主触头闭合,电动机主电路接通,电动机起动运行。
2)电动机运行时,不能一直按下SB2。
原来接触器吸合后,KM常开辅助触头闭合,所以松开SB2后,与SB2并联的KM-1常开辅助触头(自锁触头)保持吸合,接触器KM线圈可以一直得电。
3)怎样使电动机停机呢?
看图中的SB1按钮,它串联于KM线圈回路中,按下SB1,接触器KM线圈中就没有电流了,接触器KM释放,KM各触头恢复初始状态,主电路断开,电动机停机。
4)指示灯支路。电动机起动前(或停机后),由于KM辅助触头处于图中的初始位置,这时与绿灯HLG相连的KM-3常闭辅助触头闭合,绿灯亮;与红灯HLR相连的KM-2常开辅助触头断开,红灯灭。起动后,接触器吸合,其常开触头闭合,常闭触头打开,所以绿灯熄灭,红灯点亮。
5)电路中断路器QF、熔断器FU和热继电器FR起什么作用呢?
结合前面的电工基础知识可以知道:断路器QF作电动机主电路的短路保护,当电动机主电路中的连接导线、元器件短路时,断路器QF跳闸,防止事故的发生;熔断器FU作控制电路的短路保护;热继电器FR在电路中起过载保护的作用,电动机过载时,串接于控制回路的常闭触点FR断开,切断接触器KM线圈的供电,电动机保护停机。
6.根据回路编号了解电路的走向和连接方法
为了安装接线和维护检修,在图所示的电路中,可以看到有各种标号,这种标号就是回路标号。回路标号是电器设备与电器设备、元件与元件间(或导线间)的连接标记。它是按等电位原则标注的,即在电气回路中连于一点的所有导线用同一数字标注。当回路经过开关或触头时,因为在触头两端已不是等电位,所以应给予不同的标号。下面简要介绍一下电动机电路的回路标号的标注方法。
(1)主电路的回路标号
1)三相电源按相序编号为L1、L2、L3,经过开关后,在出线接线端子上按相序依次编号为U11、V11、W11。
2)主电路各支路的编号,应从上至下(垂直画图时)或从左至右(水平画图时),每经过一个电器元件的接线端子后编号要递增。如U11、V11、W11,U21、V21、W21,...等顺序标号。
3)单台三相异步电动机的三根引出线按相序依次编号为U、V、W,多台电动机引出线的编号,为防止混淆,可在字母前加数字来区别,如1U、1V、1W,2U、2V、2W,...等。
(2)控制电路回路标号 控制电路回路标号应从上至下(或从左至右)逐行对主要降压元件两侧的不同线段分别按奇数和偶数的顺序标号,如一侧按1,3,5,...等顺序标号,另一侧按2,4,6,...等顺序标号。编号的起始数字,除起动支路需从数字1开始外,照明支路和信号支路可以接上述的数字编排,也可以一次递增100作起始数,如照明支路从101开始编号,信号支路从201开始编号。


电机故障有哪些

电动机在运行中由于种种原因,会出现故障,电动机常见故障主要分机械与电气两方面。

(1)机械方面有扫膛、振动、轴承过热、损坏等故障。异步电动机定、转子之间气隙很小,容易导致定、转子之间相碰。一般由于端盖轴室内孔磨损或端盖止口与机座止口磨损变形,使机座、端盖、转子三者不同轴引起扫膛。

振动应先区分是电动机本身引起的,还是传动装置不良所造成的,或者是机械负载端传递过来的,而后针对具体情况进行排除。属于电动机本身引起的振动,多数是由于转子动平衡不好,以及轴承不良,转轴弯曲,或端盖、机座、转子不同轴,或者电动机安装地基不平,安装不到位,紧固件松动造成的。振动会产生噪声,还会产生额外负荷。

(2)电气方面故障有定子绕组缺相运行,定子绕组首尾反接,三相电流不平衡,绕组短路和接地,绕组过热和转子断条、断路等。

缺相运行是常见故障之一。三相电源中只要有一相断路就会造成电动机缺相运行。缺相运行可能由于线路上熔断器熔体熔断,开关触点或导线接头接触不良等原因造成。

三相电动机缺一相电源后,如在停止状态,由于合成转矩为零因而堵转(无法起动)。电动机的堵转电流比正常工作的电流大得多。因此,在此情况下接通电源时间过长或多次频繁地接通电源起动将导致电动机烧毁。运行中的电动机缺一相时,如负载转矩很小,仍可维持运转,仅转速略有下降,并发出异常响声;负载重时,运行时间过长,将会使电动机绕组烧毁。

三相绕组首尾错接时,接通电源后会出现三相电流严重的不平衡,转速下降,温升剧增,振动加剧,声音急变等现象。如保护装置不动作,很容易烧坏电动机绕组。所以必须辨清电动机出线端首、尾后,方可通电运转。

三相电流不平衡的故障,常常由于电动机外部电源电压不平衡所引起;其内部原因主要是绕组匝间短路或在电动机重绕修理时线圈匝数错误或接线错误。

绕组接地和短路都会造成电流过大。接地故障可用兆欧表检查。短路故障可在降低定子绕组电源电压情况下,通过测量电流来判断,也可以用测量其直流电阻来判断。

电动机过热主要原因是拖动的负荷过重,电压过高或过低也会使电动机过热。严重过热会使电动机内部发出绝缘烧焦气味,如不及时处理或保护装置不动作,很容易烧毁电动机。

笼型电动机转子铸铝导体断条或绕线式电动机转子绕组断路时,会造成定子电流不正常,出现时高时低周期性变化,还出现忽大忽小的噪声和振动。负载越重时,这种现象越显著。


三相异步电机功率千瓦和马力的换算关系

三相异步电机的额定功率PN是指其在输入额定电压和额定频率的三相对称交流电并在符合规定的环境条件下,能正常工作的轴输出机械功率。又常称为容量。一般用千瓦(KW)作单位,不足1KW的有时用瓦(W)作单位。出口或进口的电机有的用马力作单位,马力有米制和英制两种,两种马力与千瓦的换算关系略有差别。米制马力可用hp表示,较为常用。

1米制马力=0.7355千瓦,或者1千瓦=1.36米制马力。

1英制马力=0.7470千瓦,或者1千瓦=1.34英制马力。

可粗略记为:1马力(hp)=0.75千瓦(KW),或者1千瓦(KW)=1.35马力(hp)。

我国标准中确定的中小型电动机功率档次推荐值如下(KW):0.18,0.25,0.37,0.55,0.75,1.1,1.5,2.2,3,4,5.5,7.5,11,15,18.5,22,30,37,45,55,75,90,110,132,160,200,250,315,355,400,450,500,560,600,630,710,800,850,900,950,1000,1120,1250,1400,1500,1600,2000,2240,2500。

三相电动机的额定电压UN是保证电机正常工作时的电压,一般指线电压,用伏(V)或千伏(KV)作单位。我国的低压电机一般为220V或380V(前者比较少用);高压电机有3KV、6KV和10KV等。电机所用实际电源电压一般应在额定值的95%~105%之间,有要求时可放宽到90%~110%。当可采用两种电压时,用“/”线隔开,如220/380V。

三相异步电动机的额定电流IN是电机加额定电压及额定频率输出额定功率时的定子输入线电流,一般用安培(A)作单位。它是一个理论计算值,对于三相交流电动机,其计算方法如下: IN=PN/(√3UNηNcos∮N)。式中:IN——额定电流,A;PN——额定功率,W;UN——额定电压,V;ηN——该电动机技术条件中规定的效率标准值;cos∮N——该电动机技术条件中规定的功率因数标准值。

eg:某电动机PN=15KW,UN=380V,ηN=88.5%,cos∮N=0.85,则IN=15000/(√3×380×0.885×0.85)=30.3(A)

对于小功率电动机,当PN单位用KW时,额定电流IN≈2PN。eg:上例中,IN≈2PN=2×15=30。这是估算额定电流的简易记法。使用此因简易算法时,小功率电动机ηN和cos∮N比较低,所以可适当加大点倍数,如2.2PN;反之,大功率电动机ηN和cos∮N比较高,可适当减小倍数,如1.9PN。

额定电流是选择配电设备和电源设备的最主要参数。


电动机的故障检查处理

一、电动机不能起动

1.电动机不转也没有声音。原因是电动机电源或绕组有两相或三相断路。首先检查是否有电源电压。如三相均无电压,说明故障在电路;若三相电压平衡,故障在电动机本身。这时可测量电动机三相绕组的电阻,找出断相的绕组。

2.电动机不转,但有“嗡嗡”的响声。测量电动机接线柱,如三相电压平衡且为额定值可判为严重过载。

检查的步骤是,首先去掉负载,若电动机的转速与声音正常,可以判定过载或负载机械部分有故障。若仍然不转,可用手转动一下电动机轴,如果很紧或转不动,则测三相电流,如三相电流平衡,但比额定值大则有可能是电动机的机械部分被卡住、电动机缺油、轴承锈死或损坏严重、端盖或油盖装得太斜、转子和内膛相碰(也叫扫膛)。若用手转动电动机轴到某一角度感到比较吃力或听到周期性的“嚓嚓”声,可判断为扫膛。其原因有:(1)轴承内外圈之间间隙太大,需更换轴承;(2)轴承室(轴承孔)过大,长期磨损造成内孔直径过大。应急措施是电镀一层金属或加套,也可在轴承室内壁上冲些小点;(3)轴弯曲、端盖止口磨损。

3.电动机转速慢且伴有“嗡嗡”声,轴振动。如测得一相电流为零,另两相电流大大超过额定电流,说明是两相运转。其原因是电路或电源一相断路或电动机绕组一相断路。

小型电动机一相断路时可用兆欧表和万用表或校灯检查。检查星形或三角形接法的电动机时,必须把三相绕组的接头拆开,分别测量每相是否断路。中等容量的电动机其绕组大多采用多根导线并绕多支路并联,如果断掉若干根或断开一条并联支路检查则比较复杂。常采用三相电流平衡法和电阻法,一般三相电流(或电阻)值相差大于5%以上时,电流小(或电阻较大)的一相为断路相。

实践证明,电动机断路故障多发生在绕组的端部、接头处或引线处等部位。

二、启动时熔断器熔断或热继电器断开

1. 故障检查步骤。检查熔丝容量是否合适,如太小可换装合适后再试。如熔丝继续熔断,检查传动皮带是否太紧或所带负载是否过大,电路中有无短路处,以及电动机本身是否短路或接地。

2. 接地故障检查方法。用兆欧表测量电动机绕组对地的绝缘电阻。当绝缘电阻低于0.2MΩ时,说明绕组严重受潮,应进行烘干处理。如电阻为零或校验灯接近正常亮度说明该相已接地。绕组接地一般发生在电动机出线处、电源线的进线孔或绕组伸出槽口处。对于后一种情况,如发现接地故障并不严重,可将竹片或绝缘纸片插人定子铁心与绕组之间。确认不存在接地,方可包扎、涂绝缘漆烘干,检查合格后继续使用。

3. 绕组短路故障的检查方法。利用兆欧表或万用表在分开连接线处,测量任意两相间的绝缘电阻。如在0.2Mf以下甚至接近于零,说明是相间短路。分别测量三个绕组的电流,电流大的相为短路相,也可用短路探测器检查绕组相间及匝间短路。

4. 定子绕组头尾的判断方法。在修理和检查电动机时,将出线头拆开忘记作标号或原标号丢失时需重新判断电动机定子绕组的头尾。一般可用切割剩磁检查法、感应检查法、二极管指示法和变换线头直接验证法。前几种方法都需要一定的仪器仪表,并且测量者要有一定的实践经验。变换线头直接验证法则较简单,且安全、可靠、直观。用万用表的欧姆挡测出哪两个线头是一相,然后任意标明定子绕组的头尾。按所标记号的三个头(或三个尾)分别接在电路上,把剩下的三个尾(或三个头)接在一起。使电动机在空载状态下起动。如果起动很慢且噪声很大,说明有一相绕组的头尾接反。此时应立刻断电,把其中一相的接头位置对调,再接通电源。如依然如故,说明倒换的这相没有接反。把这一相的头尾重新倒过来,按同样方法依次对调其它两相,直到电动机起动声音正常为止。这种方法简单,但只宜在允许直接起动的中小型电动机上使用。容量较大不允许直接起动的电动机不可采用此法。

三、起动后低于额定转速

电动机起动后有“嗡嗡”声并有振动,应检查定子绕组是否一相断路。三相电流平衡,有“嗡嗡”声但不振动,应检查三相电压是否太低。

空载时电动机转速正常,加载后转速降低。首先使电动机空载起动,如转速正常,可加轻载;如转速低下来,说明负载机械部分有卡住现象;若机械没有故障转速未见降低,可使电动机在额定负载范围内运转;如电动机转速下降,且出力不足,则证明电动机有故障。一般原因是误将三角形接法的电动机接成星形或鼠笼转子断条。

四、电动机振动

将电动机和机械传动部分脱开,再起动电动机。如振动消除,说明是机械故障,否则是电动机故障。振动产生的原因有机座不牢、电动机与被驱动的机械部分不同心、转子不平衡、轴弯曲、皮带轮轴偏心、鼠笼多处断条、轴承损坏、电磁系统不平衡、电动机扫膛。

五、电动机运转时有噪声,故障发生在电动机的机械部分和电磁部分

区分的方法是,先运行电动机,仔细听运转时的声音,然后停电。若不正常声音消失,说明系电动机电磁部分故障,否则是机械故障。

1.机械噪声。(1)轴承发出的噪声。可能是轴承钢珠破碎,润滑油太少。检查方法是,用螺丝刀头部顶在轴承盖的外面,耳朵附在柄部,可近到“咕噜咕噜”的声音(用合适的空心管最好,听出的声音极清楚),说明系轴承故障;(2)空气摩擦产生的噪声很均匀,不强烈,是正常现象;(3)电动机扫膛引起的噪声,为“嚓嚓”声。新修复的电动机运行时,如发现噪声,可检查电动机电流是否平衡,转动是否灵活,是否达到额定转速。若无以上问题,可能是定子槽内绝缘纸或竹楔突出槽口外,致使转子与某处摩擦。其声音既尖又高。

2.电磁噪声。转子和定子配合不好(一般发生在新电动机,或同型号电动机互换转子时产生)。正常情况下,定子长度应比转子长度略长一点,噪声为低沉的嗡声(或称空声)。

3.转子轴向移位。造成电磁噪声而且空载电流增大,电动机电磁性能降低。

产生原因为定子、转子槽数配合不当(常发生在新电动机中);误装了其他电动机的转子(或应急对换),定、转子间隙不均匀;定、转子不圆,轴有轻微弯曲;电动机绕组缺相,匝间短路,相间短路;过载运行都能引起电磁噪声。

六、电动机温升过高或绕组烧毁

1.正反转次数过于频繁,电动机经常工作在起动状态下。

2.被驱动的机械卡住、周围环境温度过高(超过40度以上)、皮带过紧、电磁部分故障、电源电压过高或过低、电动机气隙不均匀、铁心通风孔堵塞及风扇叶损坏等。


异步电动机改异步发电机方法

发电机的励磁方式发电机励磁方式有两种,一种叫他励方式,这种方式是电网供给励磁电流来建立磁场。这种方式在农村无其它电源供电的情况下,无法使用。另一种叫做自励方式,他是依靠本身剩磁和一组接在定子线卷上的电容器来自行励磁,此种方式在农村广泛使用。

自励式异步电机的选择和发电所要具备的条件

(1)为了同时满足动力及照明负荷的用电,通常应选择“Y”型接法的异步电动机,以便于引出中性线。

(2)为了降低造价,应选择容量在15kW以内,电压为380/220V的异步电动机为宜。

(3)电动机转速的选择应略低于原动机转速,原动机转速一般比电动机同期转速高出5%~10%左右为宜。

(4)电动机转子上必须有一定的剩磁。

(5)必须并联恰当数值的励磁电容。

空载励磁和负载并联电容量的选择正确选择空载励磁并联电容量很重要,如果电容量选择过大,则造成空载电压太高,可能损坏设备;选得过小,空载电压又太低,选择空载励磁电容应使发电机产生的电压不超过铭牌规定的额定电压,根据这一条件空载时所需的励磁电容Co(按“△”接法)可以按下式计算

(1)式中IO—在UN下的空载励磁电流AUN—电动机的额定线电压CO—空载励磁电容μ对于三相总电容量按“Y”接法,可以按下式计算

C0=106*3I0/314UNx

(2)式中UNX—电动机的额定相电压当电动机带上负荷后,发电机电压将随负荷的增加而降低,因此带负荷运行时还必须补偿电容量。当负荷功率因数cosφ=1(即纯电阻负载)且满载时,由于有功功率在电网引起无动损耗,则必须增加电容器以补偿负荷中的无功功率,其补偿电容值可按下式估算

C1=1.25CO

(3)式中C1——带负荷时补偿电容值μ当负荷的功率因数cosφ约为0.8时,由于负载中有感性负载,为了补偿无功功率在电网中引起的无功损耗,因此必须相应的补偿电容值,其补偿电容值C2可按下式计算:

C2=0.6SN/314UN2

(4)式中C2——补偿无功功率电容值μ—异步电动机的额定容量其带额定负荷时总的负荷补偿电容C为

(5)三相总的励磁电容值为C总

(6)例如有一台J02-71-8电动机,额定功率Pe=17kW,额定转速720r/min,额定电压380V,额定电流35.8A,Y型接法,功率因数为0.8,空载电流5.5A(铭牌值),现需要改为异步发电机,求空载电容、负荷电容多少将上述数据代入公式(1)、(3)、(4)、(5)中,得到空载电容为78μF,负荷补偿总电容为322.4μF。

运行中注意事项

(1)为了保证供电电压质量,应随负荷的变化而增减补偿电容量。

(2)应在发电机的空载电压升起后再带负荷,否则发电机电压很难建立起来。

(3)带动力负荷不要超过发电机容量的25%,所带电动机的单台容量不应超过发电机总容量的10%,否则启动电流太大,电压急剧下降,电动机难以启动。